

Date Planned ://_ Actual Date of Attempt ://_				Daily	Daily Tutorial Sheet - 8 Level - 2			Expected Duration : 90 Min Exact Duration :		
				_						
6.	The l	The hybridization of the centre atom will change when :								
	(A)	NH ₃ combine	s with	H^+	(B)	AIH ₃ combine	es with 1	H ⁻		
	(C)	NH ₃ forms NI	H_2^-		(D)	SiF ₄ forms Si	$\mathbb{C}\mathrm{l}_\mathtt{A}$			
7.	In th	In the linear I_3^- (tri-iodide ion), the central iodine atom contains :								
		(A) no unshared pair of electrons (B) four unshared pairs of electrons								
	(C)	three unshared pair of electrons			(D)	two unpaired electrons				
98.	In th	In the sp ³ d hybridisation of the central atom having two lone pairs, the lone pairs are placed along the								
	equator and not along the axis while in the sp3d hybridisation of the central atom with three lone pairs									
	the lone pairs are again placed along the equator and not along the two axis because:									
	(A)	(A) In order to minimize lone pair-lone pair repulsion in both the cases								
	(B)	(B) In order to minimize lone pair-bond pair repulsion in both the cases								
	(C)	(C) In order to minimize bond pair-bond pair repulsion in the former and lone pair-lone pair								
		repulsion in the latter								
	(D)	(D) In order to minimize bond pair-bond pair repulsion in the former and lone-pair-lone pair								
_		repulsion in the latter								
99.	Whic	Which of the two do you think is more important contributor to the resonance hybrid?								
	(A)	$H \rightarrow C - \ddot{N} = \ddot{N}$	(B)	H > C = N = N	(C)	$H > C = N - \ddot{N}$	(D)	$H \rightarrow C - N \equiv N$		
00.	Selec	Select the incorrect statement.							\odot	
	(A)	(A) Double bond is shorter than a single bond								
	(B)	(B) σ – bond is weaker than a π – bond								
	(C)									
	(D)	(D) Covalent bond is stronger than a hydrogen bond								
101.	Whic	Which of these molecules have non-bonding electron pairs on the central atom?								
	I.	SF_4	II.	ICl_3	III.	SO_2				
	The o	The correct option is:								
	(A)	II only	(B)	I and II only	(C)	I and III only	(D)	I, II and III		
02.	Whic	Which species has the same shape as the NO_3^- ion?								
	(A)	SO_3	(B)	SO_3^{2-}	(C)	ClF_3	(D)	ClO ₃		
03.	The l	The hybridisation scheme for the central atom includes a d-orbital contribution in:								
		(4)								

between 60° and 90°

 $\mathrm{H_{2}Se}$

(

 \odot

(D)

(D)

105.

104.

(A)

(A)

(C)

(A)

 I_3^-

 120°

(B)

In a $\,P_4\,$ molecule, the P – P – P bond angle is :

(B)

 $d_{x^2-y^2},\, d_{z^2}, s, p_x, p_y$

 $\mathsf{s}, \mathsf{p}_{\mathsf{x}}, \mathsf{p}_{\mathsf{y}}, \mathsf{p}_{\mathsf{z}}, \, \mathsf{d}_{\mathsf{z}^2}$

 PCl_3

 109°

(C)

(B)

(D)

(C)

 \mbox{AsF}_5 molecule is trigonal bipyramidal. The hybrid orbitals used by As atoms for bonding are:

 NO_3^-

 60°

 $\boldsymbol{d}_{\boldsymbol{x}\boldsymbol{y}},\,\boldsymbol{s},\boldsymbol{p}_{\boldsymbol{x}},\boldsymbol{p}_{\boldsymbol{y}},\boldsymbol{p}_{\boldsymbol{z}}$

 $d_{x^2-y^2},\,s,p_x,p_y,p_z$